Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Biochem Eng Biotechnol ; 175: 37-69, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-29532110

RESUMO

Mammalian expression systems such as Chinese hamster ovary (CHO), mouse myeloma (NS0), and human embryonic kidney (HEK) cells serve a critical role in the biotechnology industry as the production host of choice for recombinant protein therapeutics. Most of the recombinant biologics are glycoproteins that contain complex oligosaccharide or glycan attachments representing a principal component of product quality. Both N-glycans and O-glycans are present in these mammalian cells, but the engineering of N-linked glycosylation is of critical interest in industry and many efforts have been directed to improve this pathway. This is because altering the N-glycan composition can change the product quality of recombinant biotherapeutics in mammalian hosts. In addition, sialylation and fucosylation represent components of the glycosylation pathway that affect circulatory half-life and antibody-dependent cellular cytotoxicity, respectively. In this chapter, we first offer an overview of the glycosylation, sialylation, and fucosylation networks in mammalian cells, specifically CHO cells, which are extensively used in antibody production. Next, genetic engineering technologies used in CHO cells to modulate glycosylation pathways are described. We provide examples of their use in CHO cell engineering approaches to highlight these technologies further. Specifically, we describe efforts to overexpress glycosyltransferases and sialyltransfereases, and efforts to decrease sialidase cleavage and fucosylation. Finally, this chapter covers new strategies and future directions of CHO cell glycoengineering, such as the application of glycoproteomics, glycomics, and the integration of 'omics' approaches to identify, quantify, and characterize the glycosylated proteins in CHO cells. Graphical Abstract.


Assuntos
Glicoproteínas , Animais , Células CHO , Cricetinae , Cricetulus , Glicoproteínas/genética , Glicoproteínas/metabolismo , Glicosilação , Proteínas Recombinantes/genética
2.
Sci Rep ; 10(1): 15841, 2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32985598

RESUMO

Chinese hamster ovary (CHO) cells are the predominant production vehicle for biotherapeutics. Quantitative proteomics data were obtained from two CHO cell lines (CHO-S and CHO DG44) and compared with seven Chinese hamster (Cricetulus griseus) tissues (brain, heart, kidney, liver, lung, ovary and spleen) by tandem mass tag (TMT) labeling followed by mass spectrometry, providing a comprehensive hamster tissue and cell line proteomics atlas. Of the 8470 unique proteins identified, high similarity was observed between CHO-S and CHO DG44 and included increases in proteins involved in DNA replication, cell cycle, RNA processing, and chromosome processing. Alternatively, gene ontology and pathway analysis in tissues indicated increased protein intensities related to important tissue functionalities. Proteins enriched in the brain included those involved in acidic amino acid metabolism, Golgi apparatus, and ion and phospholipid transport. The lung showed enrichment in proteins involved in BCAA catabolism, ROS metabolism, vesicle trafficking, and lipid synthesis while the ovary exhibited enrichments in extracellular matrix and adhesion proteins. The heart proteome included vasoconstriction, complement activation, and lipoprotein metabolism enrichments. These detailed comparisons of CHO cell lines and hamster tissues will enhance understanding of the relationship between proteins and tissue function and pinpoint potential pathways of biotechnological relevance for future cell engineering.


Assuntos
Células CHO/metabolismo , Cricetulus/metabolismo , Animais , Encéfalo/metabolismo , Ciclo Celular , Cromossomos de Mamíferos/metabolismo , Replicação do DNA , Feminino , Rim/metabolismo , Pulmão/metabolismo , Miocárdio/metabolismo , Ovário/metabolismo , Proteínas/metabolismo , Proteômica , Baço/metabolismo , Espectrometria de Massas em Tandem
3.
Biotechnol Bioeng ; 115(8): 2087-2100, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29704459

RESUMO

Accurate and complete genome sequences are essential in biotechnology to facilitate genome-based cell engineering efforts. The current genome assemblies for Cricetulus griseus, the Chinese hamster, are fragmented and replete with gap sequences and misassemblies, consistent with most short-read-based assemblies. Here, we completely resequenced C. griseus using single molecule real time sequencing and merged this with Illumina-based assemblies. This generated a more contiguous and complete genome assembly than either technology alone, reducing the number of scaffolds by >28-fold, with 90% of the sequence in the 122 longest scaffolds. Most genes are now found in single scaffolds, including up- and downstream regulatory elements, enabling improved study of noncoding regions. With >95% of the gap sequence filled, important Chinese hamster ovary cell mutations have been detected in draft assembly gaps. This new assembly will be an invaluable resource for continued basic and pharmaceutical research.


Assuntos
Cricetulus/genética , Genoma , Sequenciamento Completo do Genoma , Animais , Biologia Computacional , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA
4.
Biotechnol Bioeng ; 115(1): 165-173, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28921524

RESUMO

Genomic rearrangements are a common phenomenon in rapidly growing cell lines such as Chinese hamster ovary (CHO) cells, a feature that in the context of production of biologics may lead to cell line and product instability. Few methods exist to assess such genome wide instability. Here, we use the population distribution of chromosome numbers per cell as well as chromosome painting to quantify the karyotypic variation in several CHO host cell lines. CHO-S, CHO-K1 8 mM glutamine, and CHO-K1 cells adapted to grow in media containing no glutamine were analyzed over up to 6 months in culture. All three cell lines were clearly distinguishable by their chromosome number distribution and by the specific chromosome rearrangements that were present in each population. Chromosome Painting revealed a predominant karyotype for each cell line at the start of the experiment, completed by a large number of variants present in each population. Over time in culture, the predominant karyotype changed for CHO-S and CHO-K1, with the diversity increasing and new variants appearing, while CHO-K1 0 mM Gln preferred chromosome pattern increased in percent of the population over time. As control, Chinese hamster lung fibroblasts were shown to also contain an increasing number of variants over time in culture.


Assuntos
Células CHO , Cariótipo , Animais , Coloração Cromossômica , Cricetulus , Instabilidade Genômica , Cariotipagem , Fatores de Tempo
5.
J Proteome Res ; 16(10): 3672-3687, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28876938

RESUMO

Chinese hamster ovary cells represent the dominant host for therapeutic recombinant protein production. However, few large-scale data sets have been generated to characterize this host organism and derived CHO cell lines at the proteomics level. Consequently, an extensive label-free quantitative proteomics analysis of two cell lines (CHO-S and CHO DG44) and two Chinese hamster tissues (liver and ovary) was used to identify a total of 11 801 unique proteins containing at least two unique peptides. 9359 unique proteins were identified specifically in the cell lines, representing a 56% increase over previous work. Additionally, 6663 unique proteins were identified across liver and ovary tissues, providing the first Chinese hamster tissue proteome. Protein expression was more conserved within cell lines during both growth phases than across cell lines, suggesting large genetic differences across cell lines. Overall, both gene ontology and KEGG pathway analysis revealed enrichment of cell-cycle activity in cells. In contrast, upregulated molecular functions in tissue include glycosylation and lipid transporter activity. Furthermore, cellular components including Golgi apparatus are upregulated in both tissues. In conclusion, this large-scale proteomics analysis enables us to delineate specific changes between tissues and cells derived from these tissues, which can help explain specific tissue function and the adaptations cells incur for applications in biopharmaceutical productions.


Assuntos
Células CHO/metabolismo , Proteoma/genética , Proteômica , Proteínas Recombinantes/genética , Animais , Cricetinae , Cricetulus/genética , Cricetulus/metabolismo , Proteínas Recombinantes/metabolismo , Espectrometria de Massas em Tandem
6.
Biotechnol Bioeng ; 114(9): 1991-2000, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28436027

RESUMO

Coagulation factor II (prothrombin; FII) is the pre-proteolyzed precursor to thrombin in the coagulation cascade. It has 10 sites of gamma-carboxylation, which are required for its bioactivity, and is N-glycosylated at three of four putative sites. Production of recombinant human FII (rhFII) using a platform fed-batch process designed for monoclonal antibody production resulted in low levels of gamma-carboxylation and sialylation. There have not been any prior reports of successful process development and clinical manufacture of rhFII with optimal, consistent gamma-carboxylation and sialylation. In order to develop such a fed-batch process, various process parameters were evaluated to determine their impact on product quality. Process temperature and temperature shift timing were important for both sialic acid level and gamma-carboxyglutamate (Gla) level. In addition, vitamin K concentration and the type of surfactant used for preparation of vitamin K stock solution were also important for gamma carboxylation. A fed-batch study performed with various medium additives known to be involved in the N-glycosylation pathway, such as N-acetyl-d-mannosamine (ManNAc), galactose (Gal), dexamethasone, and manganese sulfate, increased the level of sialylation and enabled the elucidation of some potential bottlenecks in the sialylation pathway. The optimized process based on these studies yielded a reduction in the level of missing Gla by 0.4 moles per mole of rhFII in cell culture and a nearly threefold increase in sialic acid level. The process was successfully implemented at the 2000 L scale where a high Gla level and sialylation levels were achieved in all GMP lots. Biotechnol. Bioeng. 2017;114: 1991-2000. © 2017 Wiley Periodicals, Inc.


Assuntos
Modelos Biológicos , Ácido N-Acetilneuramínico/metabolismo , Engenharia de Proteínas/métodos , Protrombina/biossíntese , Protrombina/genética , Proteínas Recombinantes/biossíntese , Animais , Células CHO , Metabolismo dos Carboidratos/fisiologia , Simulação por Computador , Cricetulus , Humanos , Análise do Fluxo Metabólico , Redes e Vias Metabólicas/fisiologia , Proteínas Recombinantes/genética
7.
Anal Chem ; 89(3): 1477-1485, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-27991764

RESUMO

A combined lipidomics and transcriptomics analysis was performed on mouse myeloma SP2/0, Chinese hamster ovary (CHO), and human embryonic kidney (HEK) cells in order to compare widely used mammalian expression systems. Initial thin layer chromatography (TLC) analysis indicated that phosphatidylethanolamine (PE) and phosphatidylcholine (PC) were the major lipid components in all cell lines with lower amounts of sphingomyelin (SM) in SP2/0 compared to CHO and HEK, which was subsequently confirmed and expanded upon following mass spectrometry (MS) analysis. HEK contained 4-10-fold higher amounts of lyso phosphatidylethanolamine (LPE) and 2-4-fold higher amounts of lyso phosphatidylcholine (LPC) compared to SP2/0 and CHO cell lines. C18:1 followed by C16:1 were the main contributors to the difference in both LPE and LPC levels. Alternatively, the SP2/0 cell line exhibited 30-65-fold lower amounts of SM principally in the amount of 16:0. By mapping the transcriptomics data to KEGG pathways, we found expression levels of secretory phospholipase A2 (sPLA2), lysophospholipid acyltransferase (LPEAT), lysophosphatidylcholine acyltransferase (LPCAT), and lysophospholipase (LYPLA) can contribute to the differences in LPE and LPC. Sphingomyelin synthases (SMS) and sphingomyelin phosphodiesterase (SMase) enzymes may play roles in SM differences across the three cell lines. The results of this study provide insights that will aid the understanding of the physiological and secretory differences across recombinant protein production systems.


Assuntos
Cromatografia em Camada Fina , Lisofosfatidilcolinas/análise , Lisofosfolipídeos/análise , Esfingomielinas/análise , Transcriptoma , Animais , Células CHO , Linhagem Celular , Cricetinae , Cricetulus , Células HEK293 , Humanos , Espectrometria de Massas , Camundongos , Diester Fosfórico Hidrolases/genética , Análise de Componente Principal , RNA Mensageiro/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/genética
8.
J Mol Biol ; 428(16): 3337-3352, 2016 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-27423401

RESUMO

The number of proteins encoded in the human genome has been estimated at between 20,000 and 25,000, despite estimates that the entire proteome contains more than a million proteins. One reason for this difference is due to many post-translational modifications of protein that contribute to proteome complexity. Among these, glycosylation is of particular relevance because it serves to modify a large number of cellular proteins. Glycogenomics, glycoproteomics, glycomics, and glycoinformatics are helping to accelerate our understanding of the cellular events involved in generating the glycoproteome, the variety of glycan structures possible, and the importance of roles that glycans play in therapeutics and disease. Indeed, interest in glycosylation has expanded rapidly over the past decade, as large amounts of experimental 'omics data relevant to glycosylation processing have accumulated. Furthermore, new and more sophisticated glycoinformatics tools and databases are now available for glycan and glycosylation pathway analysis. Here, we summarize some of the recent advances in both experimental profiling and analytical methods involving N- and O-linked glycosylation processing for biotechnological and medically relevant cells together with the unique opportunities and challenges associated with interrogating and assimilating multiple, disparate high-throughput glycosylation data sets. This emerging era of advanced glycomics will lead to the discovery of key glycan biomarkers linked to diseases and help establish a better understanding of physiology and improved control of glycosylation processing in diverse cells and tissues important to disease and production of recombinant therapeutics. Furthermore, methodologies that facilitate the integration of glycomics measurements together with other 'omics data sets will lead to a deeper understanding and greater insights into the nature of glycosylation as a complex cellular process.


Assuntos
Glicômica/métodos , Polissacarídeos/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Proteoma/metabolismo , Biomarcadores/metabolismo , Glicosilação , Humanos
9.
J Proteome Res ; 14(11): 4687-703, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26418914

RESUMO

Chinese hamster ovary (CHO) cells are the preferred host cell line for manufacturing a variety of complex biotherapeutic drugs including monoclonal antibodies. We performed a proteomics and bioinformatics analysis on the spent medium from adherent CHO cells. Supernatant from CHO-K1 culture was collected and subjected to in-solution digestion followed by LC/LC-MS/MS analysis, which allowed the identification of 3281 different host cell proteins (HCPs). To functionally categorize them, we applied multiple bioinformatics tools to the proteins identified in our study including SignalP, TargetP, SecretomeP, TMHMM, WoLF PSORT, and Phobius. This analysis provided information on the presence of signal peptides, transmembrane domains, and cellular localization and showed that both secreted and intracellular proteins were constituents of the supernatant. Identified proteins were shown to be localized to the secretory pathway including ones playing roles in cell growth, proliferation, and folding as well as those involved in protein degradation and removal. After combining proteins predicted to be secreted or having a signal peptide, we identified 1015 proteins, which we termed as CHO supernatant-ome (CHO-SO), or superome. As a part of this effort, we created a publically accessible web-based tool called GO-CHO to functionally categorize proteins found in CHO-SO and identify enriched molecular functions, biological processes, and cellular components. We also used a tool to evaluate the immunogenicity potential of high-abundance HCPs. Among enriched functions were catalytic activity and structural constituents of the cytoskeleton. Various transport related biological processes, such as vesicle mediated transport, were found to be highly enriched. Extracellular space and vesicular exosome associated proteins were found to be the most enriched cellular components. The superome also contained proteins secreted from both classical and nonclassical secretory pathways. The work and database described in our study will enable the CHO community to rapidly identify high-abundance HCPs in their cultures and therefore help assess process and purification methods used in the production of biologic drugs.


Assuntos
Células CHO/metabolismo , Biologia Computacional/métodos , Proteoma/genética , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/genética , Transporte Biológico , Células CHO/citologia , Proliferação de Células , Cromatografia Líquida , Cricetulus , Meios de Cultivo Condicionados/química , Citoplasma/química , Citoesqueleto/química , Expressão Gênica , Anotação de Sequência Molecular , Mapeamento de Interação de Proteínas , Sinais Direcionadores de Proteínas/genética , Proteólise , Proteoma/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Via Secretória/genética , Espectrometria de Massas em Tandem
10.
Curr Opin Biotechnol ; 30: 80-6, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24997444

RESUMO

Recent advancements in proteomics have enabled the generation of high-quality data sets useful for applications ranging from target and monoclonal antibody (mAB) discovery to bioprocess optimization. Comparative proteomics approaches have recently been used to identify novel disease targets in oncology and other disease conditions. Proteomics has also been applied as a new avenue for mAb discovery. Finally, CHO and Escherichia coli cells represent the dominant production hosts for biopharmaceutical development, yet the physiology of these cells types has yet to be fully established. Proteomics approaches can provide new insights into these cell types, aiding in recombinant protein production, cell growth regulation, and medium formulation. Optimization of sample preparations and protein database developments are enhancing the quantity and accuracy of proteomic results. In these ways, innovations in proteomics are enriching biotechnology and bioprocessing research across a wide spectrum of applications.


Assuntos
Biotecnologia/métodos , Proteômica/métodos , Animais , Células CHO , Cricetulus , Escherichia coli/metabolismo
11.
Biotechnol Adv ; 31(8): 1501-13, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23916872

RESUMO

microRNAs with their ability to regulate complex pathways that control cellular behavior and phenotype have been proposed as potential targets for cell engineering in the context of optimization of biopharmaceutical production cell lines, specifically of Chinese Hamster Ovary cells. However, until recently, research was limited by a lack of genomic sequence information on this industrially important cell line. With the publication of the genomic sequence and other relevant data sets for CHO cells since 2011, the doors have been opened for an improved understanding of CHO cell physiology and for the development of the necessary tools for novel engineering strategies. In the present review we discuss both knowledge on the regulatory mechanisms of microRNAs obtained from other biological models and proof of concepts already performed on CHO cells, thus providing an outlook of potential applications of microRNA engineering in production cell lines.


Assuntos
Biotecnologia , Células CHO , Engenharia Celular , MicroRNAs , Animais , Cricetinae , Cricetulus , Proteínas Recombinantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA